
    

 
 
 
SECTION 6 

 
The Action of Matter:  Matter Waves  

  
The Matter Wave Problem 

 In the early 20th Century it was proposed, in the absence of any knowledge of 
Spherical-Centers-of-Oscillation, that perhaps matter, which was accepted as being 
particle in nature might sometimes exhibit wave behavior.  It was hypothesized that the 
wave aspect of a particle of matter should have a wavelength, λmw, of 
(6-1)              h            h 
      λmw = ──────────────── = ─── 
            particle momentum  m·v 
 This was soon verified by the obtaining of electron diffraction patterns whose 
observed wavelengths corresponded well enough with the prediction.  At that point one 
would think that the duality of matter was enough established that extensive further 
investigation of matter waves would have resulted.  But that was not the case and the 
reason was a fundamental problem that could not be overcome – the matter wave 
frequency. 

 If one reasons that the kinetic energy of the particle of matter should correspond 
to its matter wave frequency, fmw, as 

(6-2)       W    ½·m·v2 k 
      fmw = ─── = ────── 
             h       h 

then the velocity of the matter wave is 
(6-3) 21

2 1
mw mw mw 2

·m·vh
v ·f ·

m·v h

           
·v

  
 
which states that the matter wave moves at one half the speed of the particle.  That is 
obviously absurd as they must move together each being merely an alternative aspect of 
the same real entity. 

 It is no help in resolving this difficulty if relativistic mass is used (as it should be 
in any case) since the same mass appears in both numerator and denominator of equation 
6-3 where they simply cancel out.   

 It is also no help to hypothesize that it is the total energy, not just the kinetic 
energy, that yields the matter wave.  Such an attempt attributes a matter wave to a particle 
at rest.  It also gives the resulting matter wave velocity as c2/v which has the matter 
wave racing ahead of its particle.  
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 It was the inability to resolve this problem that led to the loss of interest in matter 
waves and essentially the end of further inquiry with regard to the wave aspect of matter. 

Resolution of the Matter Wave Problem 

 If instead of kinetic energy one uses energy in kinetic form, mv·v2, as developed 
in Section 4, The Action of Matter:  Motion and Relativity, equation 4-13 the problem of 
the matter wave frequency is resolved.  The traditional view of kinetic energy as the 
energy increase due to motion is not valid as a description of the processes taking place. 

 Using mass- and energy-in-kinetic-form to obtain the frequency of the matter 
wave proceeds as follows. 

(6-4)       m ·v2       [equation 6-2, but using Wv, equation v
      fmw = ─────        4-13, energy-in-kinetic-form, for Wk, 
              h          kinetic energy] 

Using this result for matter wave frequency and using the same relativistic mass, mv, in 
equation 6-5  for the matter wavelength the velocity of the matter wave then is 

(6-5) 2
v

mw mw mw
v

m ·v h
v f · ·

h m ·v

   
      

  
v 

  
and the wave is traveling with and as the particle.  On that basis the wave aspect of matter 
is established both experimentally and theoretically.  

Matter Waves and Spherical Centers of Oscillation 

 The matter wave traveling right along with the particle is like a kind of standing 
wave  relative to the particle.  A standing wave can be thought of as the sum result of two 
waves traveling in opposite directions through each other.  If the frequencies and 
wavelengths are different then their interaction produces a new frequency called a “beat”.  
The development of the beat is as follows. 

 The two waves are 
(6-6) 

           
 
and the sum is 

1

2

Wave #1 A·Sin(2 f t)

Wave #2 A·Sin(2 f t)

 
 

(6-7)     1 2Wave Sum A·Sin 2 f t A·Sin 2 f t     

              which by using a trigonometric equivalence can be arranged as 

             1 2 1 2f f f f
Wave Sum 2A·Sin 2 t  · Cos 2

2 2

         



 

 The cosine term frequency ½·[f1-f2] difference, is smaller than the sine term 
sum ½·[f1+f2].  If the expression is viewed as the higher frequency sine portion with 
the rest of the expression being the amplitude, as in equation 6-8, then 
(6-8) 

 

1 2 1 2

1 2

f f f f
Wave Sum 2A·Cos 2 t  · Sin 2 t

2 2

f f
                      Varying  Amplitude  · Sin 2 t

2

            





    
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 The wave form appears as in Figure 6-1, below. 

 
 
 
 
 

Figure 6-1 

 The solid-line curve in Figure 6-1 is the overall wave form. The dotted line,  the 
envelope, is the varying amplitude. The overall wave form exhibits in the varying 
amplitude a periodic variation  called the beat. The beat is real, not merely an appearance. 
For example two sound tones heard simultaneously produce an audible beat that one can 
hear.  It is by listening to the beat that one tunes a piano or other musical instrument. 

 Matter waves are the beat that results from the Spherical-Center-of-Oscillation's 
forward and rearward oscillations interacting with each other. This develops as follows. 
For a center in motion at velocity v, per Figure 4-3 

(6-9)   λfwd = λv·(1 - v/c)         ffwd = c/λfwd 
        λrwd = λv·(1 + v/c)         frwd = c/λrwd 
 The beat frequency, using the "Varying Amplitude" portion of equation 6-8, 
substituting ffwd for f1 and frwd for  f2, and then using equation 6-9, is 

(6-10) 

  
 beat fwd rwd v v

v vc c

v v
c c

2 2v vv v
c c

1 1 c
f f f       

2 2 1 1

1 1c v
        ·        · 

2· 1 1

c

1

 
    

           

             
            

 





 

 

 

1
2 2

2

v r
v
c

Substitute  Eqn  4 2
1

·
1


  

  

2

21
2 2

2

1
2 2

2

2

beat v 2
beat

v
r c

v
c

v
c

r

v

c c v
 · · 1

f v c

1 c
                     · · 1

v1

h c
                     · · 1

m ·c v

h
                     

m ·v

 
     

 

 
            

           



 

 

 

2
r

r

Substitute  per :
c h

m·c h·f h·       
m ·c

    


 

 

 

1
2 2

2

v r
v
c

Substitute  per  Eqn  4 6
1

m m ·
1




  

 

 

 

which is the matter wavelength as previously obtained per equation 6-1 (in which the 
mass must be relativistic mass, mv, of course).  Thus matter waves are the beat that 
results from the Spherical-Center-of-Oscillation's forward and rearward oscillations 
interacting with each other. 
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 A moving center-of-oscillation as "seen" by an external observer appears as the 
waves propagated by the center in his direction appear. But, if one could, somehow, 
actually "see" the center itself pulsating as it does, the situation would be different. The 
interaction of the forward and rearward oscillations, which produce a beat at the matter 
wave frequency, are real. The effect is as follows (repeating the form of equations 6-6 
through 6-8, which were for any general oscillation, but now using the oscillations of a 
center-of-oscillation in motion). 

 
 

1

2

Forward  Wave A· 1 Sin(2 f t)

Rearward  Wave A· 1 Sin(2 f t)

  

  

(6-11) 

            

       [Note: 1 - cos(x) ≡ 1 + cos(180° - x) 
                              ≡ 1 + sin[90°-(180° - x)] 
                              ≡ 1 + sin(x - 90°) 
            and the 90° phase is irrelevant, of course.] 
and the sum is 

(6-12)    1 2Wave Sum A· 2 Sin 2 f t Sin 2 f t          
                     Which again by using a trigonometric equivalence can be arranged as 
 

1 2 1 2f f f f
Wave Sum 2A 2A·Sin 2 t  · Cos 2

2 2

       
                    

 The cosine term is at a lesser frequency than the sine term. If the expression for 
the wave sum is viewed as the (higher frequency) sine portion with the rest of the 
expression being the amplitude, as in equation 6-13, then 

(6-13) 
1 2 1 2

1 2

f f f f
Wave Sum 2A· 1 Cos 2 t  · Sin 2 t

2 2

f f1 cosine  form  of                      2A·  · Sin 2 tVarying  Amplitude 2

        


      




        

 
 
 

 In the case of a Spherical-Center-of-Oscillation f1 = ffwd and f2 = frwd.  
Likewise, A is Uc, the center average amplitude, the oscillation being of the form 
Uc·[1 - Cos(2π·f·t)]as before, equation 1-16.   

 The wave form appears as in Figure 6-2, below, for the forward-rearward 
interaction and the matter wave beat of the center's pulsation as it would be "seen" from 
the side relative to its direction of motion. 
 

 

 

 

 
 

Figure 6-2 
The Forward-Rearward Pulsation of a Center in Motion 

Which is the Matter Wave 
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Matter Waves and Electron Orbits In Atoms 
 By the early 20th Century it had become clear that atoms consist of a positively 
charged minute nucleus surrounded mostly by empty space except for a moderate number 
of negative, equally charged, minute electrons in orbits around the nucleus the orbital 
configuration maintained by a balance of Coulomb attraction and centrifugal force.  It 
also had become clear that there were only a small number of discrete orbits that were 
stable, that is orbits that supported a continuous cyclical electron path around the nucleus. 

 Intriguingly it had also been found that the stable orbits are only those whose 
orbital path length is exactly an integer multiple of the orbiting electron’s matter wave 
length.  One would have expected that such a significant correlation would have led to 
extensive further investigation of matter waves and of the correlation.  However, the then 
unsolved problem of the matter wave frequency [first page of this section] resulted in 
general neglect of matter waves. 

 It also resulted in the invention of an alternative so far as electron orbits are 
concerned.  The statement that the orbital electron stable path length is an integer 
multiple of the electron’s matter wave length, equation 6-14,  

(6-14)   Orbital     Matter Wave Length 
          Path    

=
   Integer Multiple 

 

mw
h

2 ·R                       n·          n·          n 1,  2, ...
m·v

     
 
was algebraically modified [by switching the location of the 2 and the m·v] to state 
that the orbiting electron’s angular momentum occurred in only integer multiples of a 
fundamental quantity [Planck Constant over 2], i.e. are “quantized”, equation 6-15. 

(6-15)   Orbital 
         Angular   =  “Quantized” 
         Momentum  
                            h 
         m·v·R     =     n· n = 1,  2,              
                           2 

There is no cause, no mechanism that requires the orbital angular momentum to 
be “quantized”.  But that the stable orbits are only those whose orbital path 
length is exactly an integer multiple of the orbiting electron’s matter wave length 
is due to a specific behavior of the Spherical-Centers-of-Oscillation as follows. 

 Taking the simple case of the Hydrogen atom with its single proton nucleus and 
single orbital electron the Coulomb attraction by the positive atomic nucleus on the 
negative orbiting electron is not a smooth continuous action.  Rather it is the result          
of an on-going stream of pulses at the rate of the frequency of oscillation of the       
proton Spherical-Center-of-Oscillation that is per equation 2-6b a frequency of 
2.268,731,818·1023 hz when the proton is at rest. 

 For the orbit to be stable it must be the same for each pass, pass after pass.  If 
each pass includes exactly an integer number of the orbital electron's matter wave lengths 
then each pass has exactly the same set of Coulomb force pulses acting in each orbital 
pass.  But if, for example, the orbital path length contains only 9/10 of a matter wave 
length, 9/10 of the matter wave period, then the next pass will contain the missing 
1/10 of the matter wave length or wave period plus 8/10 of the next, and so on.  The 
matter wave being sinusoidal in form, the successive orbital passes will be all different, in  
Figure 6-2. 
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 It is this behavior which operatively causes the "stable orbits", and only those 
orbits, to be stable.  It has nothing to do with angular momentum nor quantization of 
angular momentum.  

 How Electrons Are Forced Into Stable Orbits 
 With the vast amount of Propagated Outward Flow from myriad Spherical-
Centers-of-Oscillation orbital electrons are continuously buffeted.  How are specific 
stable orbit paths enforced ?  To analyze and quantify the deviations in the variable 
quantities involved, the radius, R, and the electron orbital velocity, v, will be expressed in 
terms of the orbit number, n, the number of matter wavelengths in the orbital path.  That 
requires obtaining expressions for them that do not include any other variables.  

 That quantity, n, will here be deemed to be a continuous variable so that the R 
and v expressed in terms of n can be continuously variable and able to address 
locations between stable orbits, not merely the discrete amounts at the stable orbits. 

 The balance of forces for stability in a circular orbit requires 

(6-16)                

2 2

2

2

2

Centrifugal  Force Centripetal  Force

m·v q

R 4 · ·R

q
R

4 · ·m·v




 


 

 
 
 
 
 
 

(6-17) 
 
 
 
       [Substitute R] 
 
 
       [Solve for v] 

2

2

2

Orbit  Path  Length n ·  Matter Wavelength

h
2 ·R n·

m·v

q h
2 n·

m·v4 · ·m·v

q
v

2 · ·n·h
1

v   
n



 

 
  

  


 



 
 
 

 

(6-18)      [Substitute 6-17] 
 
 

 
 
 
 In those terms the variation of the required centripetal force for a circular orbit as  
n varies is 

2 2

2 2

2

q q
R

4 · ·m·v 1
4 · ·m·

n

R   n

 
       



(6-19)    
 
 
With constant charge the only variable in the expression for the Coulomb force is R in 
the denominator and is proportional to  n4. Therefore 

2
2

Centripetal 2 4

1
nm·v 1

F    
R n n

    
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(6-20)  FCoulomb 1/n4 

Thus   the   normal   Coulomb   force   always   provides   the   exact   value   of 
Fcentripetal required for a stable circular orbit. 

 The numerator of the Coulomb force expression is q2.  The variation from the 
force it exerts in the stable orbits depends on the ratio of the orbital path length, 2·R, to 
the matter wavelength, h/m·v. If that ratio is an integer then the behavior is the normal 
stable orbit Coulomb force.   

 If that ratio is not an integer then the force is quasi-stable Coulomb, as if the 
effective charge were modified as follows. 

(6-20)                              Orbit Length 
          Coulomb Force Numerator  ─────── ─────

mw 
                                    2·R  2·R·m·v 
──── = ──────── 

                 h/mv     h 

n2·[1/n] = n 
          Coulomb Force Denominator R2 n4 

and the overall quasi-stable Coulomb force then varies as 

(6-21)                      Numerator    n 
          FQuasi-Coulomb = ─────────── ── = 1/n3 
                            Denominator   n4 

The ratio of the quasi-Coulomb force to the normal Coulomb force then varies as 
(6-22 )   FQuasi-Coulomb  

1/n3    
          ────────────── = ──── = n 
          FNormal Coulomb   1/n4 

 This means that for values of n somewhat larger than that of the next lower 
stable orbit integer value the actual Coulomb force acting, FQuasi-Coulomb, is too 
large.  For values of n somewhat below the stable orbit integer value the actual Coulomb 
force acting, FQuasi-Coulomb,  is too small. 

 Those results mean that: 

- Outside or above the stable orbit integer value of orbit n the excessive values of 
 FQuasi-Coulomb have the net effect of moving the electron path inward. The 

inward force produces an  inward  acceleration  that  is  greater  than  the  amount  to 
produce a circular orbit. The excess acceleration produces inward electron velocity. 
(The inward FQuasi-Coulomb is greater than the outward "centrifugal force".) 

- Inside or below the stable orbit integer value of orbit n the insufficient values of  
FQuasi-Coulomb have the net effect of moving the electron path outward. The 

inward force produces an inward acceleration that is less than the circular orbit 
amount.  The deficiency produces less than circular motion, a net outward motion 
effect. (The inward FQuasi-Coulomb is less than the outward "centrifugal force".) 

 The overall effect is to force the electrons into stable orbits as Figure 6-3.  
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Figure 6-3 

The Orbital Electrons Forced Into Integer Matter Wavelength Orbits 

 The Electrons’ Transition Paths Between Stable Orbits 
 The above Figure 6-3 depicts the status when the orbital electrons are all in their 
lowest [least energy] orbits.  When the outermost of those orbital locations is not 
occupied and the electron that should be in that position is in an excessively higher 
orbital location the action of the restoring forces is to direct that electron inward on an 
orbital transition path to fill the unoccupied position.  That happens as follows. 

 The absence of an electron in the unoccupied position means that the positive 
electron-attracting field of the atom’s positive nucleus is slightly un-offset by the orbital 
electrons’ negative charges.  With all of the lowest orbits filled the atom overall presents 
an electrically neutral status as viewed from outside, but with the outer electron missing 
that presentation is slightly of inner positive charge as viewed from the excessively 
higher orbital location electron. 

 That extra centrally directed attraction curves the pattern of restoring forces of 
Figure 6-3 to that of Figure 6-4, below. 
 
 
 
 

 
 
 

 
 

 
Figure 6-4 

The Electrons Orbit Transition Paths 
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That drives the excessively higher orbital location electron inward to fill the empty 
location. 

 Any vacant location in the lowest energy positions of the orbital electron 
structure is automatically filled from above by this directing of the restoring forces.  That 
is how an outer electron “knows” that there is a space that it can and should move into 
and that is how it follows the correct path to get there. 

 From any point in an outer orbit there is one specific path to each of the inner 
orbits of that outer orbit. Such paths, which involve inward motion of the electron in 
transition between stable orbits, have at each point in their path the correct inward motion  
to compensate for the deviation of the value there of  FQuasi-Coulomb from what the 
normal Coulomb force should be at that point.  

 The electron velocity must vary smoothly from the stable velocity of the initial 
outer orbit through a period of increase and ending in the stable velocity of the final orbit.  
To do that without a discontinuity the variation must be in the form of a half cycle cosine.  
That is attested to by the sinusoidal nature of the E-M radiated photon. There can only be 
one such path that correctly compensates between any particular pair of initial and final 
orbits.  

 On either side of such a path the transition path restoring forces act just as for the 
stable orbits. The restoring forces arise because the stable orbit restoring forces will not 
allow locations between stable orbits. 
 Multi-Electron Atoms’ Orbital Electrons Structure 
 Finally the question arises:  what is the allocation of electrons to the stable orbits 
in multi-electron atoms and what impels the electrons into that structure? 

In effect the orbital electron extends a distance of ½·λmw forward and rearward 
of its instantaneous location.  The space that the matter wave occupies is like a long 
straight narrow tube tangential to the electron's location on its orbital path.  

There are three constraints that govern the behavior of the orbital electrons: 

(1) The orbital path length must be an integral number of matter 
wavelengths, as already developed; 

(2) The electrons being all of the same charge magnitude and polarity, 
tend to repel each other to a spacing equally apart subject to the 
common central attraction of the oppositely charged nucleus; 

(3) The electron spacing along the orbital path must be such that the 
½·λmw extension of the electron in space forward and rearward of 
its current position does not interfere with the space correspondingly 
occupied by any of the other electrons. 

 Of course, in addition there are the obvious constraints that the number of 
electrons in orbit must be the same as the number of equivalent positive charges in the 
nucleus because the atom is overall electrically neutral and that the electron orbits and the 
electron positions in the orbits must be such that they do not collide nor otherwise 
interfere with each other. 

The 20th Century physics model of the orbital electron arrangements is that the 
electrons are arranged in “shells” [as if in spherical surfaces] designated n=1, n=2, etc., 
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and that there is space for a maximum of: 2 electrons in the n=1 shell, 8 electrons in 
the n=2 shell, 18 electrons in the n=3 shell, and so on.  Those dispositions are 
correct, but the rules used to determine them, a set of four “Orbital Quantum Numbers”,  
provide no mechanism, no cause for the behavior.  

The orbital electron allocation to orbits and arrangement is enforced by the 
requirement of accommodating the space that each orbiting electron's matter wave 
occupies, as follows. 
 Applying the constraints to the innermost n=1 shell where the orbital path 
length is n·λmw = 1·λmw there is only space for 2 electrons in the orbital plane [see 
Figure 6-4 and equation (6-23), below].  In the figure the second electron is depicted 
located as close to the first electron as possible without their matter wave extensions in 
space interfering with each other.  Introduction of a third electron into that orbit in that 
plane would involve spacing that would disrupt the particles and the orbit. 

(6-23)  For the n = 1 shell the orbital path length, is one 
        wavelength, 2π·R = λmw.  Then from Figure 6-4, below:  
                  ½·λ    ½·2π·R mw
        Tan(Φ) =  ───── = ────── = π 
                    R        R 
        Φ = 72.34º 
        Electron Space = 360º/2·Φ = 2.49  2 electrons 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-5 
Electrons in n=1 Shell 

 Considering adding more orbital planes, the situation is like a sword dance where 
a number of dancers whirl and turn, each flashing a pair of swords [matter wave occupied 
space], while avoiding any casualties among the dancers.  The dancers' spacing, paths 
and timing must be such that while their swords slash at each others' paths they do so 
only when the dancer in that path and his extended swords is out of the way. 

 If a plane tilted relative to the above first orbital plane is introduced in the n=1 
shell its first electron will interfere with the prior two regardless of the tilt.  Imagining in 
Figure 6-4, above, that the paper is folded along the line from the nucleus to where the 
two matter waves just meet the fold tilts one electron's orbital plane relative to the other 
but does not change the interference of the two.  Thus, in terms of the angles in Figure   
6-4, a second orbital plane tilted at an angle of Φ = 72.34º or more would seem to fit. 
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 However, the electron in that second orbital plane, starting at Φ = 72.34º 
above one of the points of intersection with the first plane could travel only the distance  
[180°-2·Φ] = 35.32º before being within Φ = 72.34º of the other side of the 
orbit, the other point of intersection of the planes.  During that 35.32° the pair of 
electrons in the original plane have not had the necessary travel, Φ = 72.34º, to clear 
their matter wave extensions in space from the common points of intersection of the two 
orbital planes. 
 Therefore, the n=1 shell can only contain one orbital plane with only one 
orbit having two equally spaced electrons.  Any additional content would 
involve the matter waves of the electrons interfering with each other. 
 For the n=2 shell the “sword dance” becomes more complex.  Clearly, from the 
above, the first two n=2 electrons can readily share an orbit as in the n=1 case.  In 
fact, calculation analogous to equation (6-23) but for the n=2 case shows that three 
electrons could fit in one n=2 orbital plane.  That calculation is as follows. 
(6-24)  For the n = 2 "shell" the orbital path length 
        the circular path circumference, is two matter 
        wavelengths, 2π·R = 2·λmw. 
               ½·λ     ½·π·R mw
     Tan(Φ) =  ───── = ────── = π/2 
                 R        R 
     Φ = 57.52º 
     Electron Space = 360º/2·Φ = 3.13  3 electrons 
 However, the fit is close and more overall equidistant spacing of the electrons is 
achieved with the third electron occupying a new orbital plane tilted to the first as 
develops below.   
 How many such tilted planes can be accommodated at the n=2 level in total ? 
The shell can accommodate three such planes at θ = 60º relative tilts.  This limit is set 
by Φn=2 = 57.52º per equation 6-24.  Four planes tilted at θ = 45º would be 
too close.  The three planes have a common axis of intersection on which are the two 
points that all three of the orbits have in common (Figure 6-6).   

 
Figure 6-6 

Three Orbital Planes and Relative Tilts, n=2 Shell 
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ON THE NATURE OF MATTER 
 
 The six electrons (two per each of three orbital planes tilted at 60° relative to 
each other) pass through those two common points at φ = 360°/6 = 60° intervals 
(equidistant spacing).  With Φ = 57.52º there is just enough travel between 
successive electrons for each electron to clear the area before the next one starts   
arriving. 

 Can any more electrons fit in this shell ? Yes, two more in another orbital plane 
perpendicular to the common axis of the other three orbital planes.  This new orbit 
intersects each of the other three successively at Θ = 60º intervals.  The two electrons 
in each such intersected plane are spaced 180° apart.  An electron passing such an 
intersection with one of the first three planes 60° after one of that plane's two electron's 
has passed and taking 60° to clear the intersection would have cleared the requisite 
60° ahead of the other electron of that plane.   

 Two such electrons 180° apart can be accommodated.   

 Overall, therefore the n=2 shell can fit  eight electrons – two in each 
of the three common axis planes plus two more in the perpendicular 
plane. 

 For n=3 the situation becomes considerably more complex.  Now the separation 
angle is Φn=3 = 46.32°. The reasoning as for n=2, above, indicates that the shell 
can still accommodate only three orbital planes intersecting on a common axis, each 
plane having two electrons in orbit 180° apart with the one more plane perpendicular to 
the common axis of the other three planes.  In other words, for n=3 the shell appears 
able to only accommodate the same orbital structure as does the n=2 shell.  This is in 
fact the case. 

 More precisely, the n=3 shell so functions until full in that form.  Additional 
electrons for higher Z atoms then start filling the n=4 shell.  Then, the electric field of 
those outer n=4 electrons becomes sufficient to modify the orbital structure situation 
and possibilities of the inner n=3 shell.  The n=3 shell then can accommodate the 
expected five orbital planes on a common axis, each with two electrons, in addition to the 
already filled n=2 type structure.   

 For higher n the same kind of effect of outer on inner shell modifies the 
structure, the n=5 shell filling partly before the n=4 shell is completely filled and that 
partial outer shell's field then modifying the inner shell's structure. 

 It is the complex fitting of the space occupied by the orbital electron matter 
waves into the available integer-matter-wavelength orbital shells that determines the 
orbital electrons' arrangement structure.  That structure is summarized in the table of 
Figure 6-7, below.  The table, arranged so as to directly correspond to the “quantum 
numbers” system of 20th Century physics shows what those quantum numbers actually 
represent. 

 The entire structural effect is the result of the matter waves of the orbital 
electrons and the restrictions that their space requirements impose on the system. 

 

 

 74



 
 
 

6 – THE ACTION OF MATTER:  MATTER WAVES 
 

 75

 ”Quantum                                             
  Number”        Orbital Structure                    
 
    n       The shell's orbital path length is "n" 
            matter wavelengths long.  

    n = 1, 2, 3, …  

    l        The number of "sets" in a particular 
            "shell" equals  [ l + 1]. 

                l = 0, 1, … n-1 
            A "set" consists of orbital planes of  
            orbits of the same length, tilted at 
            equal angles relative to each other, 
            and sharing the same common axis about 
            which tilted.     

    m l      The "index number" of any particular 
            orbital plane in any particular "set" 
            of orbital planes.  

               m l = +[ l], +[l – 1], … 0, -1, … -[ l] 

            The total number of such orbital planes 
            in the "set" is 

               [ 2·l  + 1], always odd. 
    ms      Each individual orbital plane can 

            accommodate 2 electrons equally spaced. 

              ms = -½ and +½ [for the 1
st and 2nd         

                   electrons of the plane].           
  

Figure 6-7 


