
 
 

 

 

 

SECTION  9 

Quantifying the Deflection 
 

The manner of the deflection of the Propagated Outward Flow is curving of 
the path of rays of the flow as they pass close to atoms of the deflector with the 
direction to which curved depending on the relative positions of the ray and an atom 
and the amount of the curving depending on how close the ray passes to the atom.  
Because of the range of those variables and their various combinations the 
“deflection” is essentially a “scattering” in various amounts in various directions, all 
scattering being away from the perfectly vertical upward which the deflector is 
designed to solely deflect by virtue of its atomic spacing and slight tilt. 

 A two-dimensional physical example of the deflection is the diffraction 
pattern of light diffracted by a slit.  Figure 9-1, below, presents the diffraction pattern 
produced by a slit that is 5.4·10-6 meter wide with incoming light of wavelength 
4.13·10-7 meter .  The peaks and valleys of the pattern, the interference pattern, 
are a phenomenon of the light imprint on the flow that carries it.  The envelope of the 
pattern is the relative amounts of the underlying flow carrying the light.  

 For that reason, while the interference pattern varies according to the 
wavelength of the light involved, the form of the envelope of that pattern is always the 
same. 
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Figure 9-1 
A Slit Light Diffraction Pattern 

 The flow concentration produced by the two slit edges falls off with distance 
from the edge inversely as the square of distance from its atoms.  The Cauchy-Lorentz 
Distribution  is an inverse square function of its variable.  Its Density Function can 
represent the relative flow intensity pattern produced by the diffraction process by 
representing the envelope of the diffraction pattern.  In Figure 9-2, below, the Cauchy-
Lorentz distribution is fitted to the diffraction pattern by the appropriate choice of 
value of its distribution parameter γ [Greek gamma]. 
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Figure 9-2 

 

Figure 9-2 
The Cauchy-Lorentz Distribution Diffraction Pattern Envelope 

 The  deflection  angle, Φ, is  the  angle  of  deflection  of  the  rays to  any  
particular  point  on  the  diffraction  pattern.  That is Φ is the angle of deflection of the 
rays directed to that particular point and of intensity per the Cauchy-Lorentz 
Distribution at that point. 

 The interest here is not in the location of the light interference maxima and 
minima, but in the deflection angles the diffraction imposes on the flow.  However, 
calculation of the deflection angles to the minima provides a good indication of the 
amount of flow deflection obtained over the overall diffraction pattern.  The table 
below presents that data for the 5.4·10-6 meter wide slit with incoming light of 
wavelength 4.13·10-7 meter.  [The minimums are counted outward from the 
center peak of the diffraction interference pattern].     

Minimum #    Φ°  Minimum #   Φ° 

1  4.39     8 37.72  

2  8.80   9 43.50  

3 13.26   10 49.89  

4 17.81   11 57.28  

5 22.48   12 66.60  

6 27.36   13 83.86  

7 32.37   14 Sin(Φ) > 1.0 
 

Sin(Φ) = n · [ light wavelength / slit width ], n = 1, 2, ... 
Figure 9-3 – Table of Diffraction Minimums Deflection Angles 

 Again, while we are not interested in the diffraction minimums and not in the 
diffraction interference patterns at all, the envelope of the diffraction pattern depicts 
the distribution of the deflection of the flow that carried the light in the diffraction 
pattern. 
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                                                                     9 – QUANTIFYING  THE  DEFLECTION 

 The above table demonstrates that the deflection of the flow is at least in 
amounts up to 90°. That deflection may well extend to angles beyond 90°, perhaps 
to as much as 180º, a complete reversal of direction.  There is no way of 
determining that from the diffraction pattern, however, because the light of the 
diffraction pattern cannot be deflected beyond 90° in any case because the light 
cannot penetrate the material containing the slit.   

 But, the flow readily penetrates and permeates all of material reality.  

 The tilt [Figure 1-6] of the cubic crystal structure divides the slit into 1010 
sub regions the first and last of which are at the slit’s edge and produce the maximum 
deflection.  The tilt also arranges that ultimately all of the vertical components of the 
incoming vertical flow must pass through one of those “at the edge of the slit” regions, 
must experience maximum deflection. 

 The  overall  average  effect  is  equivalent  to  every  ray’s  vertical  
component  curving  at  least 90º  because  the  crystal  tilt  causes  every  ray  to  pass  
extremely  close  to  an  atom  at  some  point  in  the crystal,  as  shown for the  
extreme  rays  in  the  figure below. 

 

 

 

 

 

 

Figure 9-4 – Single Slit Gravitation Deflection 

PROPAGATED OUTWARD FLOW DEFLECTION CAUSED BY WAVE SLOWING 
 The bending of Propagated Outward flows’ paths results from differential 
slowing, that is the systematic slowing of the flow wave front in different amounts 
along that front.  The slowing takes place in accordance with equation 1-1, above.   
Figure 9-1, below, depicts the differential slowing-caused process. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9-5 – flow Deflection 
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 The figure indicates the differential slowing of the upward-directed [as for 
gravitation] flow flux that results in deflection of the flows’ paths. The slowing is 
directly proportional to the encountered concentration of the encountered flow flux, 
and, therefore the angle of deflection, Ф, is proportional to that concentration. 

QUANTIFYING THE FLOW DEFLECTION IN LIGHT DIFFRACTION 
 The diffraction pattern is a projection on a screen or piece of photographic 
film of the diffracted light as it spreads out due to the diffracting action.  The physical 
size, the linear dimension of the pattern becomes larger as the distance from the 
diffracting slit to the screen or film on which the pattern appears increases.  But the 
angles, as measured from the center of the slit to any point on the diffraction pattern 
[relative to the 0° angle from the center of the slit to the center of the pattern], are the 
same regardless of the distance from the slit to the screen or film. 

 Therefore, to analyze and evaluate the pattern requires attending to those 
angles, not linear distances on the pattern.  Since the linear distances on the pattern are 
irrelevant, any convenient distance from the slit to the screen or film may be chosen.  
In the following analysis that distance will be taken as equal to the slit width, 
5.4·10-6 meter in this case. 

 The data of interest here, which is a measure of the amount of flow bending 
contained in the diffraction pattern, is the portion of the total light incident on the slit 
appearing in any specified portion of the diffraction pattern.  That portion can be 
defined in terms of the angles just described and that portion is an otherwise 
dimensionless number, again independent of the physical or linear size of the 
diffraction pattern.  

 The Cauchy-Lorentz Distribution for this application is as follows. 
(9-1) The Cauchy-Lorentz Distribution Density Function 

      [a] In General 
                    1  ┌      γ      ┐ 
       f(x;x0,γ) = ─ ·│────────────│ ─
                                               π  └(x – x0)

2
 + γ2┘ 

      [b] As Used Here 

                    ┌      γ      ┐ 
       f(d;mid,γ) = │─────────────│ 
                    └(d – mid)2 + γ2┘ 
  mid = half-way point between slit edges 

    d = distance from mid 

    γ = half-width at half-maximum 
 From the above Figure 9-2, the half-width of the Cauchy-Lorentz Distribution 
at its half-maximum is 74.0% of the distance from the mid-point to the first 
minimum in the interference pattern.  That is γ  is 74.0% of the displacement from 
the centerline to the first intensity minimum outward from the centerline.  Calculating 
the deflection angle to that minimum 4 the angle is found to be 4.39°. 

 The corresponding displacement along the d-axis [for screen distance = slit 
width] of the above Figure 9-3 is the value of γ in the formulation of the Cauchy-
Lorentz distribution. 
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                                                                     9 – QUANTIFYING  THE  DEFLECTION 

(9-2) γ = [74% of][[slit width]·Tan[4.39°]] 
   = [0.74]·[5.4·10-6 meter]·[0.077] 
   = 3.1·10-7 meter  
 The deflection angle, Φ, for any particular point on the diffraction pattern is 
the angle between [a] a reference line that runs from the center of the slit 
perpendicular to the barrier containing the slit toward the projected diffraction pattern 
and [b] a line running from the center of the slit to the location of the particular point 
on the diffraction pattern.  That is the angle of deflection of the rays directed to that 
point and of intensity per the Cauchy-Lorentz Distribution at that point.   
 In these diffraction patterns so long as the ratio of the wavelength of the 
incident light to the width of the slit is constant, then each deflection angle, Φ, is 
independent of the distance from the slit to the screen where the diffraction pattern is 
projected.  
 The Cauchy-Lorentz Distribution’s Cumulative Distribution Function is the 
integral of the Density Function, that is the area under the Density  Function curve, the 
cumulative density.  That function is given in equation 9-3, below. 
(9-3) The Cauchy-Lorentz Distribution Cumulative 
      Distribution Function 

      [a] In General 
                             ┌ x – x ┐    1 0 1
       f (x;x ,γ) = ·arctan│───────│ + ─ cum 0 ──
                                                      π       └   γ   ┘   2 
      [b] As Used Here 
                              ┌ ┐    1 d - mid 1
       fcum(d;mid,γ) = ──·arctan│─────────│ + ─ 
                        

π       └    γ    ┘   2 
 With mid = 0, when d = - ∞ [a deflection of 90° to the left in Figure 9-
3], then fcum = 0.  Likewise at d = + ∞ then fcum = 1, the total amount.  To 
find the fraction, F, of the total amount of the incident light entering the slit that is 
deflected through some chosen angle, Φ, or more to the left of mid the procedure is 
as follows, taking Φ = -45° as an example and using γ = 3.1·10-7 meter per 
equation 9-2.  Because that light exists only on the flows carrying it the portion, F, is 
the fraction of the total amount of flows entering the slit that are deflected through 
angle Φ or more. 
 1 – Calculate the displacement, d, of Figure 9-3. 

(9-4) d = Tan[Ө] × [slit width] 
   = Tan[-45°] × [5.4·10-6] 
   = -5.4·10-6  [for this example of Ө = -45°] 
 2 – Calculate F = fcum(d;mid,γ) from equation 9-3. 
(9-5)                            ┌ ┐    1 d - mid 1
      F = fcum(d;mid,γ) = ──·arctan│─────────│ + ─ 
                           

π       └    γ    ┘   2 
                -6    1  1 ┌ (-5.4·10 ) – (0) ┐
        = ──·arctan  + ─ │───────────────────│
           π       └      3.1·10-7     ┘   2 
   = 0.018 
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Then P, the percentage deflected through angle Φ or more of the total flows 
incident on the slit is:  

F  ÷  fcum (d = + ∞) = F ÷ 1 = F. 

 P = 1.8% of total incident light entering the 
   slit on each side [for this example]. 

In this example calculation the portion of the total flow flux that is deflected 
y Φ = 45° or  more  is P45 = 1.8 + 1.8 = 3.6%. b

 
 Table 9-6, below, presents the portion of the total amount of the incoming 
gravitational flow flux that is deflected through some chosen angle, Φ or more, using 
the above 45° example type of calculations for each of the deflection angles cited in 
Table 9-3, above. 
 

 Φ° % Deflected  Φ° % Deflected 

 4.39    40.9 37.72  4.7 

 8.80  22.6 43.50  3.8 

13.26  15.2 49.89  3.1 

17.81  11.3 57.28  2.3 

22.48   8.8 66.60  1.6 

27.36   7.1 83.86  0.4 

32.37   5.7   
 

Table 9-6 
Percent of Total flow that is Deflected By Various Angles of Deflection, Φ, or More 

USING  THESE  SLIT  DIFFRACTION  RESULTS  FOR  
    A  GRAVITATION  DEFLECTOR 
 The above table and example indicate that significant flow ray deflection does 
take place in the case of the atoms along the edge of the 5.4·10-6 meter wide slit, 
but the amount of deflection is not very much – about only 3.6% deflected 45° or 
more, in the example. 

 On the other hand, looking at 100% of the rays of flow flux that arrive, 
uniformly spaced, at the 5.4·10-6 meter wide slit, 3.6% of them arrived at that 
slit near enough to the atoms of one of the edges so as to be deflected 45° or more.  
All of the rays of that 3.6% achieved that much deflection because they passed their 
deflecting atom much more closely than the rest of the rays.   

The 1.8% on each side of the Cauchy-Lorentz Distribution passed its 
deflecting atom within a distance of 1.8% of the slit width [0.018 × (5.4·10-
6) = 9.7·10-8 meter].  If it could be arranged that all of the vertically upward 
flow gravitational flux were to pass that closely to atom then 100% of the 
gravitational flux would be deflected by 45° or more. 

 However, these deflection calculations are for a flow flux of the density or 
concentration of the flow carrying the beam of light to the diffracting slit.  The 
vertically upward flow flux of the Earth’s gravitational field is immensely more dense 
or concentrated 
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